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J. Phys. A: Math.  Gen .  23 (1990)  3279-3295. Printed in the UK 

The Voronoi tessellation generated from eigenvalues of 
complex random matrices 

G Le Caer t  and J S Ho$ 
HLRZ, Forschungszentrum Julich, Postfach 1913, D-5170 Jiilich 1, Federal Republic o f  
Germany 

Received 27 December 1989 

Abstract. The Voronoi froth generated from eigenvalues of asymmetric complex random 
matrices is studied by numerical simulation. I t  is more regular than the random Voronoi 
froth I R V F )  generated from a Poisson process. The existence of a unique tessellation, called 
here random matrix Voronoi froth ( R M V F ) ,  follows from the universality of the distribution 
of eigenvalues, which is also briefly commented on .  The geometrical and  topological 
properties of the R M V F  have been characterised. An empirical and  accurate distribution 
function is also proposed for the cell side length of a RVF. Deviations from the Aboav- 
Weaire law are  discussed. Their magnitude may be interpreted as  a measure o f t h e  departure  
from an  equilibrium structure in the frame of the statistical crystallography theory of Rivier. 

1. Introduction 

The Voronoi tessellations with respect to a Poisson process in D-dimensional spaces 
( D  from 2 to 4) are of interest in many fields including, for example, materials science 
(Meijering 1953, Wray et a1 1983, DiCenzo and Wertheim 19891, geography (Getis 
and Boots 1979), quantum field theory (Christ et a1 1982, Drouffe and  Itzykson 1984), 
biology (Honda  1978), statistics (Ripley 1981, Stoyan et a1 1987), etc. Such tessellations, 
called here random Voronoi froths (RVF,  Rivier 1985), are determined by Poisson 
distributed points such that each point has associated with it the region of space nearer 
to that point than to any other point. The Poisson point process is characterised by 
(Stoyan et a1 1987): 

(a )  the number of points in any finite region of ‘volume’ V has a Poisson distribution 
of mean pV, where p is the density; 

(b )  the numbers of points of the process in k disjoint regions are k independent 
random variables. 

The present paper will focus on two-dimensional space-filling random cellular 
structures. The ZD random Voronoi froth belongs to such structures. It is unique, in 
the statistical sense and easy to construct. However, it has a very different appearance 
from all spacefilling natural structures (Weaire and  Rivier 1984). In  order to describe 
such natural structures, Rivier (1985) has applied the methods of statistical mechanics. 
He has tried to determine the equilibrium structures using maximum entropy inference 
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under few constraints such as space-filling, Euler’s relation (mean number of cell sides 
( n ) = 6 ) ,  correlations between cell sizes and  shapes etc (see also De Almeida and  
Iglesias 1988, 1989). Statistical crystallography, as named by Rivier, has, however, not 
yet completely solved the difficult problems related to subtle correlations in the 
organisation of the cells. As emphasised by Rivier (1985), the R V F  structure is 
spacefilling by construction rather than through a constraint. As the random Voronoi 
froth is rapidly relaxed to equilibrated structures, Rivier has suggested that the R V F  is 
a young structure which has not fully equilibrated itself under the influence of con- 
straints. 

In  order to know if all Voronoi tessellations show the same features, it is interesting 
to construct a Voronoi tessellation which looks more closely like natural structures. 
Such a tessellation must also be isotropic, homogeneous and easy to construct by 
computer simulation. We argue, in the present work, that the Voronoi tessellation 
associated with the eigenvalues of complex random matrices, called here random 
matrix Voronoi froth ( R M V F )  allows the defining of such a structure. The R M V F  is also 
unique in the statistical sense (section 2). It is intermediate between complete disorder 
and  complete order. In a related paper (Le Caer 1990), we will show that the point 
process associated with the eigenvalues of complex random matrices may be applied 
to the statistical study of natural point processes such as positions of trees in forests, 
sea-bird nests, graphite nodules in cast iron, etc. This is a further argument which 
makes the R M V F  noteworthy. 

We will first describe some properties of the distribution of eigenvalues of complex 
random matrices. As for every random cellular structure, we will characterise various 
geometrical (area, perimeter, side length) and topological (side number, correlations 
among cells) distributions. We will also discuss two important semi-empirical laws, 
the Aboav-Weaire law (Aboav 1970, Weaire 1974) and  the Lewis-Rivier law (Lewis 
1928, Rivier and Lissowski 1982, Rivier 1983, 1985). Extended numerical results are 
given. They may be helpful to test future theoretical models. 

2. Distribution of eigenvalues of complex random matrices 

Random matrices (Mehta 1967) were widely studied in the 1960s in order to model 
the fluctuations of highly excited nuclear energy levels and have since been applied 
to fluctuations of energy levels in various situations and to the study of chaos (Seligman 
and Nishioka 1986). The distribution of eigenvalues of complex Gaussian random 
matrices has been calculated mathematically by Ginibre (1965) and Mehta (1967). It 
has also been discussed recently in the context of quantum chaos (Sommers et a1 1988, 
Grobe et a1 1988, Grobe and Haake 1989). In  all cases, the eigenvalues show a repulsion 
effect, characterised by a zero probability of finding two identical eigenvalues. In the 
case of real eigenvalues, this repulsion may be tuned by changing the symmetry 
properties of the matrix ensemble. Due to the repulsion effect, eigenvalue patterns are 
more regular than the Poisson point pattern. The Voronoi tessellation generated from 
complex eigenvalues cannot in fact be discriminated from biological tissues by a simple 
visual inspection (figure 1) although differences are clearly seen in table 1. 

We first consider an ensemble of N x  N fully asymmetric complex matrices M,, 
with elements ml,( N )  whose real and imaginary parts are independently distributed 
according to a Gaussian distribution with mean m = O  and standard deviation U / &  

The joint probability density for the eigenvalues z , ,  . . . , z h  as well as the n-point 
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[ b )  

Figure 1. ( a )  Cells from the epidermal epithelium of the cucumber (after Lewis 1928). 
( b )  Voronoi tessellation generated from a complex Gaussian random matrix. 

Table 1. Proportions p,, of the number of sides n for various froths. 

n = 3  n = 4  n = 5  n = 6  n = 7  n = 8  n = 9  n = l O  n = l l  

EC‘L - 0.020 0.251 0.474 0.224 0.030 0.001 - - 

RMVF 0.0022(2) 0.069(1) 0.2676i16) 0.356(3) 0.217(1) 0.0715(9) 0.0147(7) O.O019(3i 15x10-s(7)  
R V F  0.0113 (2) 0.1068 ( 2 )  0.2595 ( 5 )  0.2946(3) 0.1986 ( 1 )  0.0905 (3) 0.0295 ( 3 )  0.0074il) 1 4 4 ~  IO-’i3) 

f Epithelium cucumis 1000 cells (Lewis 1928) 

correlation function R, have been calculated by Ginibre (1965) (see also Mehta 1967, 
chapter 12). When N + CO, the correlation function R, approaches well defined limits: 

R,(z,, . . . , z,) =(TU’)-“ exp( - 1 %)det[exp(z,zF/u2)] Iz I 2  ,,,= I ,  ,n. (1) 
1 = I  (+ 

The density R,(z) is isotropic, nearly constant and equal to the asymptotic value 1/ru2 
( N  + CO) for r( =Iz l )  s U N ” ~  and goes to zero in an interval of order U around UN”’ 
(figure 2) (Ginibre 1965). This is particularly important for numerical simulations 
whose aim is to produce the best approximation of the properties expected for infinite 
N with a finite N value. It is readily verified that 

R,(z, , . . . ,  z , ) = R n ( z I + a  , . . . ,  z ,+a)  (2)  

when N + CO, whatever n and the complex number a. When N + CO, R, + (d-” for 
large distances, approaching therefore to the value of the n-point correlation function 
of a Poisson process with a density p = (TU’)-’. The eigenvalues are thus uncorrelated 
for large distances. The point process associated with the eigenvalues is isotropic 
whatever N and also homogeneous in the limit N+CO (relations (1) and (2), Ginibre 
1965, Mehta 1967). 

As shown by Ginibre (1969, the previous distribution of eigenvalues is identical 
with the distribution of the positions of charges of a two-dimensional Coulomb gas 
in a harmonic oscillator potential, at a temperature kT = 0.5. It is therefore a Gibbs 
point process in the plane (Stoyan et a1 1987) for which the interaction potential does 
not reduce to a pair potential. 

Some conditions, under which an universal distribution of complex eigenvalues of 
this type is obtained, have been discussed recently. As our numerical simulations give 
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some new information about this problem, we will discuss it briefly. For finite N, the 
eigenvalues are approximately located in a disc (figure 3 ( a ) ) .  

If SN is the spectral radius of the matrix M , w / ~ T ,  then 

lim S, = U  (3) , +X 
almost surely (Hwang 1986), i.e. S, converges to U with probability 1. Hwang has 
conjectured that ( 3 )  remains valid under suitable moment conditions for independently 
and  identically distributed ( I I D )  matrix elements, such that: 

10 

AN __j 4 

for all p z 2  and some a. 

Pirl 

0 & 1, 8 12 16 20 0 2 L  0 5  1 0  1.5 2 0  0 
X r / a  

Figure 2. ( a )  Generalised semicircle law: histograms calculated from equation (5) with 
N = 400. Points: average values from numerical simulations (50 matrices, N = 400). ( b )  
Cumulative distribution of the distance from a point taken at random to the nearest 
eigenvalue. Points: simulation, full curve: calculated from equation (9) ( U  = 1). 

Figure 3. ( a )  Random matrix Voronoi froth, N = 400, U = 1, ( b )  Random Voronoi froth, 
N = 400 points distributed according to a Poisson process in a circle of radius 20. 
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According to Hwang, the latter condition due  to Geman (see Hwang 1986) can be 
weakened by tighter estimates. He further conjectured that the limiting spectral distribu- 
tion of M , / ( a m )  distributes uniformly over the unit disc. Sommers et a1 (1988) 
have also concluded that the results obtained for Gaussian ensembles for the N +. cc 
limit are valid for much broader classes of ensembles, without, however, specifying 
these classes. As noted by Sommers et a1 (1988), the projection of the eigenvalue 
density (constant in a disc for N + c o ~  on the real axis or on the imaginary axis leads 
to a generalised semicircle law: 

( 5 )  A h  (x )  = (2,’ T ) (  - N - x ~ ) ’  ’ 1x/ s ” 
(written here such that ,V A,(x) d x  = N / 2 ) .  This law has been used (figure 2) to 
check the validity of the numerical simulations (see section 3). 

During the course of the present work, Grobe and Haake (1989) have published 
a paper in which they have shown that the type of level repulsion observed for Gaussian 
ensembles is universal and  characterised by the fact that the distribution P n n ( r )  of 
nearest-neighbour spacing goes like r 7  when the distance r between two eigenvalues 
goes to zero. 

According to Grobe and  Haake (1989), the crucial property yielding universal 
behaviour of Prim( r )  is: 

m , , - 0 
W,l(  m u )  - constant 

where W,, is the distribution of the matrix element m,,. 
We have done many simulations with various distributions including Pareto-type 

distributions. They show indeed a universal behaviour but with conditions which are 
weaker than the condition given by (4) or  by (6). By universal we mean here that the 
numerical characteristics of the simulated distributions of eigenvalues d o  not differ 
significantly from the characteristics of the eigenvalue distribution in the Gaussian 
case. In particular, the cumulative distribution P., ( r )  defined in subsection 3.1 (equation 
(9) )  is the same within numerical accuracy for a large class of distributions of the 
matrix elements. For example, the universal distribution is obtained when one takes 
I I D  m,, random variables such as: 

Prob{mG= l / f i }=Prob{m>,=- l /d5}=0 .5  ( 7 )  
(x  = real o r  imaginary) with W,,( m,,) = 0 when m,, = 0. We have observed that only the 
condition that the mean and the variance exist is needed to yield the universal 
distribution in the limit N + CO (Le Caer 1990). It even seems that no  condition at all 
on the moments (relation (4)) is needed in the limit N + CO. This has the consequence 
that there only exists one tessellation (in the statistical sense) associated with the 
eigenvalues of fully asymmetric complex matrices, just as there only exists one tessella- 
tion generated from a Poisson process. The random matrix Vornoi froth may therefore 
be used as a reference structure somewhere between complete disorder and  complete 
order. 

3. Numerical methods 

3.1. Eigenvalue calculations 

Random numbers distributed according to a Gaussian distribution have been obtained 
by the Box-Muller method (see for example Black and Kennedy 1989). Two uniform 
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pseudo-random numbers U, V E  [0,1] are obtained with the RANF( ) generator on a 
Cray-YMP/832, they are used for calculating Xi and X - :  

x, = (-log U ) '  COS(2TV) x2 = (-log U ) '  ' s i n ( 2 r r ~ ) .  (8) 

XI and X 2  are independently distributed according to a Gaussian distribution with 
mean zero and  standard deviation l/&. The matrix elements are taken as Xi + i X 2 ,  
the (T of the previous section is therefore equal to 1 and the spectral radius of a n  
N x N matrix is close to JE (figure 3 (a ) ) .  

The complex matrices are diagonalised with a vectorised subroutine FO2AJF from 
the V A G  library. The time needed to diagonalise a matrix varies as N2'  on one Cray 
processor, going from 4s for N = 200 to 490s for N = 1800. The average spectral radius 
obtained from 50 matrices with N =400 is S400=0.995*0.02 for matrix elements 
distributed according to equation (7) in agreement with the conjecture of Hwang 
(S,= 1) for N+a. 

Figure 2 (  a )  presents the generalised semicircle law calculated from equation ( 5 )  
with N = 4 0 0 .  It has been verified that no significant differences exist between the 
histograms obtained from the projections of the eigenvalues on the real and the 
imaginary axis. Figure 2 shows the average projection on the real axis for 50 Gaussian 
matrices ( ( A \  (x > 0) + A ,  (x < 0))/2).  Similar results are obtained for distribution (7)  
and for a uniform distribution of the real and imaginary parts between -&/2 and 
&/2 ( (T = 1). Finite-size effects are observed in figure 2( a )  for x = 20. The cumulative 
distribution function of the distance r from a point chosen at random to the nearest 
eigenvalue is given by P\ ( r )  for N +  cl^ with 

where E\ ( r )  has been calculated by Mehta (1967). P,% ( r )  is estimated from simulations 
by using methods described by Ripley (1981, chapter 8). The theoretical P,, ( r )  is 
calculated from equation (9). The product in (9) converges rapidly (see also Grobe 
et a1 1988). Figure 2( b )  demonstrates the excellent agreement (better than 0.5%) 
between simulation and theory (similar results are obtained for N as small as -50). 

3.2. Voronoi tessellations 

The computation of Voronoi tessellations from RVF or from eigenvalues of complex 
random matrices ( R M V F )  has been done with an  algorithm which first constructs the 
Delaunay tessellation. This algorithm is an  adaptation for D = 2 (Ho, unpublished) 
of the algorithm of Tanemura er a1 (1983) for D = 3. Periodic boundary conditions 
are used with respect to a square of side 2 S k m  where S ,  is the spectral radius 
defined in section 2. This produces very elongated cells mainly at the corners of the 
square. As explained below, these cells are not used in the statistical study. They have 
been deleted from figure 3. 

Very recently, Telley (1989) has used the Voronoi tessellation in the Laguerre 
geometry (Imai et a1 1985). In the latter geometry, points are replaced by circles in 
the plane and  the distance from a point to a circle is defined by the length of the 
tangent line. 

The repulsion effect, which gives rise to a more regular tessellation, is clearly seen 
by comparison between figure 3 ( a )  and 3 ( b ) .  We present in table 1 the distributions 
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p ,  of the number of sides of the Voronoi polygons for the cucumber froth of figure 1 
and  for the RMVF and  RVF. 

The variance p2 = ( n 2 )  - (n)' is 0.64, 1.23 and 1.78 for the cucumber, R M V F  and R V F  

respectively. The proportions of cells with four, six or eight sides clearly differ for the 
first two froths. 

In order to study the statistical properties of the R M V F  and  RVF, it would be best 
to use the method of Hinde and  Miles (1980) who have simulated 2 x lo6 cells for a 
RVF. They have calculated the properties of the central cell generated in a fixed area 
from n points, where n is distributed according to a Poisson distribution with a mean 
( n )  = 100. As we d o  not know the distribution of the number of eigenvalues in a given 
area for a given p beforehand, we have chosen to fix a matrix size N = 500 and  to 
study only as a mean 60% of the cells contained in a circle of fixed radius R = 17.32, 
while S,,, = 22.36. 

This method, which at first sight may not be considered a good method because it 
would be necessary to also let N fluctuate, has been used for the Poisson process in 
the same conditions. The results of section 4 will in fact show that it works quite 
accurately for the random Voronoi froth. As the fluctuation of the number of eigenvalues 
in a fixed area and  for a given density are expected to be smaller for the RMVF than 
for RVF, the previous agreement strongly supports the validity of our numerical results 
which are also further confirmed by some simple checks (section 4). 

Three simulations have been performed in the first case and  five in the second case, 
with respective number of cells N,: 

( i )  RVF: N, = 600 696, N ,  = 1001 500, N ,  = 1020 800. 
(i i)  RMVF:  N ,  = 90 303, N ,  = 80 409, N,  = 25 600 for N = 500, N ,  = 48 026 and  N = 

Some satistical properties of the Delaunay tessellations have also been calculated 
400, N ,  = 59 977 for N = 600 (but with, as a mean, 50% of the eigenvalues). 

but only for one simulation. 

4. Numerical results 

4.1.  Random Voronoi froth 

In the following, all quantities are the averages performed over the simulation results 
and the quoted error represents one standard deviation estimated from them. All 
parameters have been normalised by multiplying by a factor whose value is known 
theoretically (Stoyan et a1 1987, Miles 1970) as a function of the density p. This factor 
is p for the cell area ( a ) ,  &/4 for the cell perimeter ( s )  and 6&/4 for the cell side 
length ( 1 ) .  For Delaunay tessellation, the normalisation factor is 2p, 3 ~ & / 3 2  and  
9 ~ 4 / 3 2  for the area ( A ) ,  the perimeter ( S )  and the side length ( L ) .  Table 2 gives 
( X ) ,  ( X ' )  for the previous parameters and  for the cell side number n. The average 
number of sides m, of cells in contact with n-sided cells and  the average of normalised 
area ( a ( n ) )  (tables 5 and 7 )  are used to discuss the Aboav-Weaire law (section 5) and  
the Lewis-Rivier law (section 6). The distribution p n  of the number of sides (table 1) 
is in very good agreement with the distributions calculated numerically by Hinde and  
Miles (1980) and  Drouffe and Itzykson (1984). The latter authors have obtained 
theoretical expressions involving integrals for p n  and ( a (  n ) ) .  Drouffe and Itzykson 
have calculated these integrals by the Monte Carlo method and obtained the previous 
quantities without simulating cells. The very good agreement between their results and 
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Table 2. Average, second moment, standard deviation for the area, the perimeter, the side 
length, the side number ( A ,  S, L are for the Delaunay tessellation). Values ( X * ) *  from 
other numerical sumulations ( N S )  or from theoretical calculations ( T ) .  

X ( X )  ( X 2 )  ( X ' ) *  Reference for ( X 2 ) *  U\ 

a 0.9998 (4 )  1.277 ( 1 )  1.280 T, Gilbert 1962 0.5267 (5)  
S 1.0002 (4 )  1.0586 (4 )  1.0601 NS,  Hinde and Miles, 1986 0.2420 (4)  
I 1.0003 (4) 1.417 ( 1 )  1.418 T, quoted by Boots 1987 0.646 ( 1 )  
n 5.99998 T, 6 37.781 (3 )  37.783 NS, Hinde and Miles 1980 1.334 ( 1 )  
A 1.0004 1.769 1.77312 T, Miles 1970 0.877 
S 1.0007 1.150 1.15048 T, Miles 1970 0.387 
L 1.0004 1.2425 124252 T, Miles 1970 0.492 

ours confirm the validity of our simulation method for n < 12. Figure 4 shows the 
distribution of the normalised side length I, Q(x,) = I ,  q ( 1 )  dl, with a bin size of 
0.02. For x, = 0, the average Q ( 0 )  obtained for three simulations is 0.010 25 *O.OOO 23 
which gives q ( 0 )  =0.512*0.012, as Q(x,) is almost constant for small lengths. Boots 
(1987) has obtained q ( 0 )  = 0.493 from a simulation with 30 000 polygons. The value 
q ( 0 )  = 0.46 which is given by Crain (1978) is too small, as already discussed by Boots. 

The distribution of the absolute value I of a Gaussian variable N(m, ,  af)  is given 
by ( 1 2 0 )  

x,+o.o2 

- 3OlP "4 0 0 4  0 8  1 2  $ 6  2 0  

0 0 5  1 0  1 5  2 0  2 5  3 0  
I 

Figure 4. Distribution of the normalised cell length side / for a random Voronoi froth 
(histogram: simulation with IO6 cells, full curve: empirical shape Q,(I) of subsection 4.1). 
Inset: relative deviation between the two histograms for I less than 2. 
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The first two moments are 

( 1 ' )  = a;'+ m f  (12) 

where erf is the error function. For some combination of mI and CT/, this distribution 
has a shape which is similar to the shape of q ( l ) .  From ( I )  = 1 and ( I 2 )  = 1.4172, we 
deduce m, =0.9144 and U, =0.7623 ( m, /a ,  = 1.20) and we calculate Q 1 ( x , )  = 
{t;+o'02 q r ( l )  dl. The full curve of figure 4 passes through the midpoints of the calculated 
bins. The deviation between Q and QI is at most of the order of 2% and has an average 
absolute value of 0.7% for I less than 2.5 and 1% for I less than 3. The value of q , ( O )  
is 0.5098. 

Table 3. Average, second moment,  s tandard deviation for the area,  the perimeter, the side 
length, the side number ( A ,  S, L are  for the Delaunay tessellation) in the random matrix case. 

x tX)  ( X ' )  

a l i 3 X 1 0 - J  
S 1.0022 ( 5 )  
r 1.0022 ( 5 )  
n 6.0005 (9) 
A 1.0003 
S 1.0108 
L 1.0108 

~ 

1.0570 (2 )  
1.0132 15) 
1.338 ( 2 )  

37.23 ( 1 )  
1.248 
1.059 
1.118 

0.239 (1) 
0.1038 (4)  
0.580 ( 2 )  
1.1 10 ( 7 )  
0.498 ( 1  ) 
0.220 12) 
0.328 ( 1  1 

x 10-3 

0 0 5  1 0  1 5  2 0  2 5  3.0 
I 

Figure 5. Distribution of normalised cell length I (normalisation factor 1.5,tp) for a random 
matrix Voronoi froth,  histogram: simulation with 90 303 cells, full curve: equation (IO) 
(which is invalid for  the R M V F ) .  
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x10-3 

a 

Figure 6. Distribution of the normalised area for the random matrix Voronoi froth (full  
triangles: histogram calculated for a normal distribution with m = 1 a n d  U =0.?385). 

4.2. Random matrix Voronoi froth 
No theory exists for the parameters described in this section, except that we trivially 
expect that ( n )  = 6 and that the normalisation factor for the area is the density p .  We 
have kept the normalisation factors of the previous section for the perimeter and the 
side length of the cells in the Voronoi and Delaunay tessellations. Table 3 shows that 
the averages are almost 1 and table 1 gives the proportions p n  of n-sided cells. 

Figure 5 presents the side length distribution. The empirical shape of subsection 
4.1 does not fit the simulated distribution ( m l  = 0.9658, (T/ = 0.6392). The distribution 
is narrower than the corresponding R V F  distribution and q ( 0 )  is smaller ( q ( 0 )  = 0.45 f 
0.01). Figure 6 finally shows the distribution of the normalised area as well as a 
Gaussian approximation to it. It is not a gamma function of the form a y - '  exp(-ya) 
as it is for a RVF ( y  = 3.60, Weaire et a1 1986, DiCenzo and Wertheim 1989). 

5. Aboav-Weaire law 

In two dimensions there are only two elementary structural transformations: neighbour 
switching and face disappearance (Weaire and Rivier 1984). As emphasised by Rivier 
(1985), the latter transformation cannot occur in a ZD Voronoi froth as the number of 
seeds is conserved. The Aboav-Weaire law expresses that the average number, m, 
( = m ( n ) ) ,  of sides of cells adjacent to n-sided cells is approximately linearly related 
to l / n  by 

m, = A +  B / n .  (13) 
A linear law is in fact obtained with A = 5 and B = 6 (Weaire 1974) from the average 
turning angle of a grain. Weaire also established a sum rule 

__ 

( n m,, ) = p + 3 6 = ( n ') (14) 
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where p2 is the variance of n, p2 = (n') -(n):. As the experimental B values were 
different from 6, Weaire (1974) proposed to include p2 in B and later Aboav (1980) 
proposed to express (13) as 

(15) 

Blanc and  Mocellin (1979) have studied the evolution of a froth under the two 
elementary structural transformations, assuming no correlation beyond nearest neigh- 
bours (see also Rivier 1985). They have thus obtained the linear law (15) with a = 1. 
Very recently, Fortes and Andrade (1989) have constructed a network from randomly 
distributed straight lines. They obtain a very large second moment value p2 = 9.1 1. The 
m, variation is still well represented by the Aboav-Weaire law ( 1 5 )  for Q = 0.35. They 
conclude to the general applicability of the law to random networks. 

Table 4 gives the values of m,, obtained in the present work for the R V F  as well as 
the values published by Boots and Murdoch (1983) for 50 000 cells. 

m,, = 6 - a + ( 6 a  + p 2 ) /  n. 

Table 4. Values of m,, for the random Voronoi froth 

I1 

Boots and  
Murdoch (19831 Present work 

3 
4 
5 
6 
7 

9 
I O  
11 

n 

7.013 
6.731 
6.493 
6.3 12 
6.169 
6.048 
5.932 
5.841 
5.779 

7.009 ( 3 )  
6.718 ( 3 )  
6.492 i 1 1  
6.315 ( 2 )  
6.171 ( 1  J 

6.050 ( 1 ) 
5.948 ( 2 J 

5.859 ( I ) 
5 78 ( 1 )  

Equation 115) 
a = 0.586 

7.180 
6.738 
6.473 
6.297 
6.171 
6.076 
6.003 
5.944 
5.896 

Equation ( 2 2 )  

7.036 
6.707 
6.485 
6.316 
6.176 
6.056 
5.949 
5.850 
5.758 

- 

No results have been published on m 2 ( n ) .  We have calculated a: , (n )  = m ' ( n )  - m: 

a , , ( n ) = a ( m , , - P )  (16) 
in the investigated range of n, with cy = 0.241 and p = 4.723 for the RVF. Using sampling 
theory, we obtain an  estimate, in the statistical sense, of the standard deviation on the 
m,, values of table 4: 

a * ( n ) = a , , ( n ) / G  (17) 
where s is the number of simulations with N ,  cells which have been used to calculate 
m,,. In the present work, N ,  = 10' for two simulations and  N ,  = 6 x 10' for the last one 
(subsection 3.2). 

Using equations (16 )  and (17), we can calculate a"( n )  in particular for n = 3 ,  n = 9 
and  n = 10, which represent only about 4% of the cells. We obtain tr"(3) = 0.003, 
a* (9 )  = 0.001 a* ( lO)  = 0.002 in agreement with the values of table 4, which have been 
estimated directly from the experimental results. We conclude that the m,, values can 
be used to check the Aboav-Weaire law even for p, ,  values as low as -0.5%. 

There is no  value of a in (15) which is able to account within numerical accuracy 
for the results of table 4. If we evaluate 

(18) 

- 
(m,, = m ( n ) )  and found that, to a very good approximation, 

a,, = (nm, ,  - 6 n  - p 2 ) / ( 6  - n ) 
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we obtain values ranging from 0.415 (3)  for n = 3 to 0.800 (5)  for n = 10 with systematic 
behaviour and  no fluctuations around a constant as would be expected if equation 
(15) were valid. 

If we fit the ‘experimental’ m,, with (15), using a least-squares method for n = 4-8, 
we obtain a =0.586. Differences larger than ten times the standard deviation exist 
between the calculated and  ‘experimental’ m, for n = 3, 5, 8, 9 (table 4). Equation (15) 
shows that m6 does not depend on a and is: 

m6 = 61- p 2 / 6  (19) 

i.e. m,=6.297 (1) instead of 6.315 ( 2 ) .  In other words, a pz value of 1.89 (1) would 
be needed instead of 1.781 (3) in order to account for the ‘experimental’ m6. A weighted 
least-squares fit, using all n values, gives a =0.618. We conclude that there exist 
deviations from the Aboav- Weaire law in the RVF. This agrees with a remark of Rivier 
(1985), who suggests that the R V F  may not be topologically stable with shape correlation 
extending beyond nearest neighbours. According to Kawasaki ( 1990), his recent simula- 
tions for studying the kinetics of grain growth confirm the link, first established 
theoretically by Blanc and Mocellin (1979), between the Aboav-Weaire law and  
correlations restricted to nearest-neighbour cells. 

In order to overcome these discrepancies, Aboav (1987) has proposed for the R V F  

an  empirical equation free from arbitrary constants: 

m,, = ( n ) + 2 / n + + ( ( n 1  ’ ) -n ’  2 ,  (20) 

( (n’  ’) = 2.4343 (7) from the present work). Equation (20) better fits the observed values 
than (15), but it presents two main drawbacks: 

( i)  it departs too much from the basic linear law; 
(ii) it is not valid for all tessellations. The sum rule (14) applied to equation (20) 

requires that (Aboav 1987): 

p 2 = 2 + $ ( 6 ( n ‘  ’ ) - (n’  ’)). 

This is approximately true for the RVF, but for the R M V F  p2=  1.23 (2) while the 
right-hand side is 1.88 (1). In fact, (20) does not fit at all the m, values of table 5. It 
may be better to try to add  small correction terms to (15). A plot of nm, as a function 
of n for the R V F  or for the R M V F  (figure 7) clearly shows a downwards curvature. 

In order to get a numerical evaluation of the deviations from the linear law, we 
expand nm, as a function of n up to n 2 :  

(21) m, = A +  B / n  + Cn. 

Table 5. Values of m,, for the random matrix Voronoi froth 

n = 3  n = 4  n = 5  n = 6  n = 7  n = 8  n = 9  n = l O  n = l l  

Simulation 7.21 14) 6.770 (91 6.462 (8 )  6.217 (7 )  6.020 ( 9 )  5.860 ( 7 )  5.724 (7)  5.60 11 1 5.47 (4)  

Equation (15 ) .  7.543 6.873 6.471 6.203 6.012 5.869 5.757 5.668 5.595 
a = 1.136 

Equation 1221, 7 258 6.774 6.455 6.218 6.028 5.868 5.727 5.600 5.483 
a = 0.62 
h = 7 . 2 3 ~  10 
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Figure 7. Values of nm,, for the random matrix Voronoi froth (solid rectangles) and  fit 
with equation (22) ( fu l l  curve).  

In the previous expansion it is easy to take the sum rule (14) into account using only 
( n )  and (n ' ) ,  as done for (15). We obtain: 

m, = 6 - a + b ( 6 + p 2 / 6 ) + ( 6 a + p 2 ) / n  -bn. (22) 

Other sum rules, which are not so easily taken into account, have been established by 
Lambert and Weaire (1983). A fit of m,, with (22) gives a = 0.2332 and b = 6.343 x lo-? 
(table 4). Equation (22) cannot be valid for all values of n, as m, would become 
negative for n = 195 (but p s o  is only of the order of (Drouffe and Itzykson 1984)). 

Equation (16) also holds for an!( n )  in the R M V F  with CY = 0.162 and p = 4.542. Using 
all the simulations with various N ,  values, we calculate ~ " ( 3 )  = 0.02, a* (9 )  = 0.004 
and a*(lO) =0.008 from (17), in reasonable agreement with the deviations given in 
table 5. We notice that U,,, decreases with n and that the condition an1 2 0 and the 
Aboav-Weaire law give a 6 - /3, which is 1.46 for the R M V F .  This upper limit is in 
fact quite close to the values of a which are obtained in many natural random cellular 
structures a - 1.2 (Aboav 1980, 1984) and in the present work for the RMVF.  

A weighted fit with the linear law gives a = 1.14 for the R M V F .  The a, calculated 
from (18) vary between 0.79 (4) for n = 3 and 1.41 (6) for n = 11 with a mean which 
is in fact close to the previous value of a. A fit with (22) gives a = 0.62, b = 0.0723. 

Although the linear law is a better approximation for the R M V F  than for the RVF, 
we still observe significant deviations mainly for n = 3 , 4  (table 5). Similar observations 
are reported by Kawasaki (1990) in his simulations of grain growth. A different approach 
has been used by Boots and Murdoch (1983) which consists in replacing the Cn term 
in (21) by a C l n '  term. This form is in fact valid whatever n and the application of 
the sum rule (14) yields 

m, = 6 - a + b i ( l / n ) +  (6a + p 2 ) / n  - b /n ' .  (23) 

In the range of n which is accessible in the present studies, (22) and (23) give fits of 
comparable accuracy. Considering the b / a  values obtained for the R V F  and R M V F  

(0.272 and 0.116 (equation (22)) and 8.42 and 7.91 (equation (23)), respectively), it is 
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tempting to relate this parameter to the ageing of the structure which changes the 
shape correlations of cells. The equilibrated froth may correspond to b / u  = 0 if one 
further considers the distributions of the normalised length of cell sides 1 which may 
show a small or zero probability for 1 = 0. Aboav (1980) has studied soap froths at 
different stages of their growth with about 15 h between two successive stages, His 
results show a change of the curvature of m, as a function of n from downwards to 
upwards as a function of time, particularly for small values of n. Unfortunately, the 
numbers of cells which are used to determine m,, are too small to give a significant 
test of the deviation from the linear law. In conclusion, the present section suggests 
investigating more precisely the deviations from the linear Aboav-Weaire law in natural 
structures. These deviations mainly occur outside the range n = 5-8. This may help to 
define new constraints in statistical crystallography. 

6. Lewis-Rivier law 

This law relates the average normalised area (a,,) of n-sided cells linearly to n 

(a,,) = ( n  - n 0 ) / ( 6  - n o )  (24) 

which gives, as expected, ((U,,)),, = 1. I t  was first proposed by Lewis (1928). Rivier has 
later shown (Rivier 1983, 1985) that the ‘ideal’ structure, in the sense of statistical 
crystallography, corresponds to the minimal number of constraints and  has Lewis’ law 
as its equation of state. This law allows the maximising of the entropy. For equilibrium 
structures, 8 ( n o  = 6 - 1/81 measures their ageing (Rivier 1985). 

Figure 8 of the present paper and figure 4 of Drouffe and Itzykson (1984) show 
that ( U , , )  varies linearly with n for n < 11 in a RVF. A clear change of slope is obtained 

2 8  i 
I 

i, , , . , , . , , , , , , , , , , , , , , , , , , . , , , , , , , , , , , , , , , , , , , , , , , , , , . , , , , , , , , , , , , , , 
0 2 1, 6 8 10 12 1 4  

n 
Figure 8. 
(solid trianglea, Leuis  1928). the R C F  (crosses)  and the R M C F  (solid squares)  

Normalised drea of n-sided cells (a,,) as d function of n for the cucumber froth 
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Table 6 .  Aberage normalised area ( U , , )  d> a function of 11 for the K V F  a n d  the K L I v ~ .  

n = 3  n = 4  n = 5  n = 6  n = 7  n = 8  n = 9  1 1 = l 0  n = l l  ? ? = I 2  n = 1 3  

R V F ~  0.342 0.560 0.777 0.996 1.228 1.463 1.693 1.930 2.155 2.400 2.691 
( 1 1  ( 1 )  ( 1 1  ( 1 )  1 1 1  ( 2 )  (31  (61 ( 8 )  (91 ( 1 1 )  

KVF: 0.342 0.558 0.774 0.996 1.222 1.451 1.688 1.938 2.16 2.37 2.6 
(21  (21  ( 1 1  ( 2 1  ( 1 )  ( 2 )  12) ( 2 1  ( 3 )  ( 5 1  ( 2 1  

R M V F F  0.53 0.721 0.869 1.003 1.133 1.259 1.382 1.50 1.65 - - 

i l l  ( 3 )  i l l  ( 1 )  ( 1 )  ( 3 )  19) i 2 )  ( 4 )  

Drouffe a n d  Itzqk\on (19841 
: Present lcork 

by the latter authors for n > 12. From table 6 we obtain n,, = 1.6 for R V F  and  accidentally 
a similar value for the cucumber froth n,,= 1.9 (for n varying from 4-8) as seen in 
figure 8. For the RVF, n,, was believed to be n,, - 0, as established from the data of 
table 3 of Crain (1978). Boots (1987) has first suggested that the columns for the 
average second moment of the perimeter and for the average area have been transposed 
in the Crain's paper. This is in complete agreement with the results of the present work 
(table 6) .  

For the RMVF, the largest linear part of (a , , )  against n gives n,, = -1.78. We conclude 
than one cannot interpret the n,, values for both Voronoi froths in the frame of the 
Rivier statistical theory because they are not equilibrated. 

7. Discussion 

As for the RVF, the Voronoi tessellation generated from the eigenvalues of complex 
matrices which have no particular kind of symmetry, has not fully equilibrated under 
the influence of constraints. In the language of Rivier (1985), i t  is also a young structure 
but not as young as the RVF. The R M V F  may thus be relaxed, even more rapidly than 
the RVF, to a structure similar to natural structures. Three elements support these 
arguments: 

(i) the distributions of the number of sides (table 1) ;  
( i i )  the b / a  values of the Aboav-Weaire law are large but (b/a),.rLt<(b/a)RvF; 
(iii) the probability for short edges is large but 9(0)Rh,vF < 9(0)RLF. 
The formation of a dip in this distribution at 1 = 0 may be expected and  is observed 

for natural and  equilibrated structures. 
Although we do  not know if the following remark has any significance, we observe 

that the behaviour of the side length I reminds us, at least formally, the behaviours of 
local field distributions P ( h )  in spin glasses (Thomsen et a1 1986, Binder and Young 
1986) with a more and more pronounced dip in P (  h )  for h = 0 and  T-+ 0. A further 
similarity is that the empirical 9 ( I )  distribution of subsection 4.1. (equation (10)) is 
the theoretical shape of P ( h )  for a temperature higher than the spin-glass temperature 
in an  infinite-ranged Ising spin glass (Thomsen et al 1986). It also nicely fits simulation 
results of Binder (figure 73, Binder and Young 1986) for the nearest-neighbour sym- 
metric Gaussian model (Le Caer, unpublished results). 

The present work confirms the importance of the Aboav- Weaire law but brings 
some corrections which may be used to follow the evolution of cellular structures. 
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8. Conclusion 

The universal distribution of eigenvalues of fully asymmetric complex random matrices 
allows the defining of a unique tessellation. The repulsion effect between eigenvalues 
gives rise to a structure which is more regular than the random Voronoi froth and  
which looks at first glance like some natural mosaics. However, the deviation with 
respect to the Aboav-Weaire law and the distribution of cell-side length allow one to 
conclude that the random matrix Voronoi froth is still a young, not completely 
equilibrated, structure in the sense of the statistical crystallography theory of Rivier. 
This froth may also serve as a reference tessellation. 

Geometrical and topological distributions have been characterised both for the 
random Vornoi froth and  the random matrix Voronoi froth. An empirical and accurate 
distribution function has been proposed for the side length of the polygons in a random 
Voronoi froth. Deviations from the Aboav-Weaire law which occur outside the range 
n = 5-8 have been discussed. 
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